
50 | P a g e

Topics to be covered

1. Introduction
2. Types of errors
3. Handling Exceptions Using Try – Except – Finally Blocks

51 | P a g e

EXCEPTION HANDLING
While executing a Python program, it may happen that the program does not execute at all or

it can generate unexpected output. This happens when there are syntax errors, run time

errors, logical errors or any semantic errors in the code.

S SYNTAX ERROR SEMANTIC ERROR LOGICAL ERROR RUN TIME ERROR

It occurs when we put
some incorrect
punctuation, incorrect
word sequence or there
are some undefined
terms or missing
parenthesis.
Syntax errors are also
called as Parsing errors.
For example:
>>> p=2(num1+num2)
This statement is
mathematically correct
but python interpreter
will raise SYNTAX error
as there is no sign
present between 2 and
parenthesis. The correct
statement will be:
>>> p=2*(num1+num2)

It occurs when the code
is correct according to
syntax but it is not
meaningful. The code
will not behave as
expected.
For example:
A = 10
B = ”hello”
Result = A + B
Here, The code will
execute as it has correct
syntax but will not
generate expected
output.

It may occur when
there may be some
improper sequence of
statements or
incorrect use of
operator. It will not
stop a program from
executing but will
produce incorrect
output. It will
generate incorrect
output for every value
of input.
For example:
If we want to find sum
of two numbers and
write the following
code:
A, B = 10, 15
C = A * B
print (“Sum is: “, C)
Here, the code will
generate A * B but we
wanted to find Sum.
Hence it is a logical
error.

It occurs at the time of
program execution.
Such errors produce
incorrect output for
specific values of input.
These errors are also
called Exceptions,
which occur when
something unexpected
happens leading to stop
the program execution.
For example:
5. Division by zero
6. Finding square

root of negative
number.

7. Insufficient
memory available
on computer.

8. Trying to open a
file that does not
exist.

EXCEPTIONS:

11. Run time errors are known as Exceptions.

12. When an Exception is generated, the program execution is stopped.

13. Removing errors from a code is referred to as EXCEPTION HANDLING.

14. Commonly occurring exceptions are usually defined in the Interpreter. These are

known as Built-in Exceptions.

52 | P a g e

Some Built-in Exceptions are listed as below:

EXCEPTION DESCRIPTION
ZeroDivisionError It is raised when an expression or a value is getting divided by zero (0).

For example: If c = 0, then p = b/c will result in ‘ZeroDivisionError’.

NameError It is raised when an identifier is not assigned any value earlier and is
being used in some expression. For example: p = a*b/c then it will result
in ‘NameError’ when one or more variables are not assigned values.

TypeError It is raised when variables used in any expression have values of
different data types. For example: p=(a+b)/c then it will result in
‘TypeError’ when the variables a, b and c are of different data types.

Value Error It is raised when given value of a variable is of right data type but not
appropriate according to the expression.

IOError It is raised when the file specified in a program statement cannot be
opened.

IndexError It is raised when index of a sequence is out of the range.

KeyError It is raised when a key doesn’t exist or not found in a dictionary.

EXCEPTION HANDLING:

Every exception has to be handled by the programmer for successful execution of the

program. To ensure this we write some additional code to give some proper message to the

user if such a condition occurs. This process is known as EXCEPTION HANDLING.

Exception handlers separate the main logic of the program from the error detection and

correction code. The segment of code where there is any possibility of error or exception, is

placed inside one block. The code to be executed in case the exception has occurred, is placed

inside another block. These statements for detection and reporting the execution do not affect

the main logic of the program.

53 | P a g e

STEPS FOR EXCEPTION HANDLING:

An exception is said to be caught when a code designed for handling that particular exception

is executed. In Python, exceptions, if any, are handled by using try-except-finally block. While

writing a code, programmer might doubt a particular part of code to raise an exception. Such

suspicious lines of code are considered inside a try block which will always be followed by an

except block. The code to handle every possible exception, that may raise in try block, will be

written inside the except block.

If no exception occurred during execution of program, the program produces desired output

successfully. But if an exception is encountered, further execution of the code inside the try

block will be stopped and the control flow will be transferred to the except block.

Example 1:

54 | P a g e

The output will be:

Example 2:

In above example, the user entered a wrong value that raised ValueError. We can handle

this exception by using ValueError exception.

Result:

Use of multiple “except” block:

Sometimes, it may happen that a single piece of code in a program might have more than one

type of error. If such an event happens, we can use multiple except blocks for a single try

block.

Example 1:

55 | P a g e

The output will be:

Example 2:

We can also handle exceptions without naming them.

The output will be:

Default exception messages can also be displayed when we are not handling exceptions by

name.

56 | P a g e

The output will be:

try…except…else Clause:

Just like Conditional and Iterative statements we can use an optional else clause along with

the try…except clause. An except block will be executed only when some exceptions will be

raised in the try block. But if there is no error then except blocks will not be executed. In this

case, else clause will be executed.

The output will be:

57 | P a g e

finally CLAUSE:

The try…except…else block in python has an optional finally clause. The statements inside the finally

block are always executed whether an exception has occurred in the try block or not. If we want to use

finally block, it should always be placed at the end of the clause i.e. after all except blocks and the else

block.

The output will be:

58 | P a g e

Exercise

1 In a try-except block, can there be multiple 'except' clauses?
a) No, there can be only one 'except' clause.
b) Yes, but only if the exceptions are of the same type.
c) Yes, it allows handling different exceptions separately.
d) No, 'except' clauses are not allowed in a try-except block.

2 When might you use the 'finally' block in exception handling?
a) To handle exceptions that are expected to occur frequently.
b) To provide a resolution for every possible error.
c) To close resources that were opened in the 'try' block, regardless of whether an
exception occurred or not.
d) To avoid having to use 'except' blocks.

3 What will be the output of the following code snippet?

a) Division by zero!
b) Arithmetic error occurred!
c) No error!
d) This code will raise a syntax error.

4 Which of the following is NOT a standard built-in exception in Python?
 a) ValueError
 b) IndexError
 c) NullPointerException
 d) KeyError

5 What is an exception in programming?
 a) An error that occurs during runtime
 b) A warning message from the compiler
 c) A comment in the code
 d) A statement that terminates the program

6 What is the purpose of the "try" block in a try-except construct?
 a) To handle the exception by executing specific code
 b) To specify the type of exception to be thrown
 c) To define a custom exception class
 d) To ensure a specific block of code always executes

7 Which of the following exceptions in Python is not a built-in exception?
 a) ValueError

59 | P a g e

 b) KeyError
 c) CustomError
 d) IndexError

8 Assertion (A): In Python, the "try" block is used to enclose code that might raise an
exception.
Reasoning (R): The "try" block is where the program attempts to execute code that
might result in an exception. If an exception occurs, it is handled in the
corresponding "except" block.
A. Both A and R are true and R is correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is True but R is False
D. R is True but A is False

9 Assertion (A): The "finally" block in Python is always executed, regardless of
whether an exception is raised or not.
Reasoning (R): The "finally" block contains code that is guaranteed to execute,
whether an exception occurs within the "try" block or not.
A. Both A and R are true and R is correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is True but R is False
D. R is True but A is False

10 Assertion (A): Python allows multiple "except" blocks to be used within a single "try"
block to handle different exceptions.
Reasoning (R): By using multiple "except" blocks with different exception types,
Python provides the flexibility to handle various types of exceptions separately.

A. Both A and R are true and R is correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is True but R is False
D. R is True but A is False

11 Code snippet:

Predict the output when:
a) The user enters "0" .
b) The user enters "5".
c) The user enters "abc".

12 State whether the following statement is True or False: An exception may be raised
even if the program is syntactically correct.

13 What will be the output of the following code if the input is “e”:

60 | P a g e

try:
 value = int("abc")
 result = 10 / 0
except ValueError:
 print("Error: Invalid value conversion")
except ZeroDivisionError:
 print("Error: Division by zero")

14 What will be the output of the following code if the input is:
 i. 2 ii. 2.2

try:
 num = int(input("Enter a number: "))
except ValueError:
 print("Error: Invalid input")
else:
 print("Entered number: ",num)

15 Rewrite the following code after handling all possible exceptions.
 num = int(input("Enter a number: "))
 result = 10 / num
 print("Result:", result)

16 Consider the code given below:
L = [‘s’, 45,23]
Result = 0
for x in L:
 print (“The element is “, x)
 Result += x
print(“The addition of all elements of L is: “, Result)
Which of the following error will be raised by the given Python code?
a) NameError
b) ValueError
c) TypeError
d) IOError

17 Code snippet:

Predict the output when:
 a) The user enters "10" for both numbers.

61 | P a g e

 b) The user enters "5" for the first number and "0" for the second number.
 c) The user enters "abc" for both numbers.

18 Which of the following statements is true?
a). The standard exceptions are automatically imported in Python programs.
b). All raised standard exceptions must be handled in Python.
c). When there is deviation from the rules of a programming language, a semantic
error is thrown.
d). If any exception is thrown in try block, else block is executed.

19 Identify the statement(s) from the following options which will raise TypeError
exception(s):
a) print('5')
b) print(5 * 3)
c) print('5' +3)
d) print('5' + '3')

Programming based question:

1 Create a simple calculator program that takes two numbers and an operator (+, -,
*, /) as input. Implement exception handling to handle cases like division by zero
and invalid operators.

2 Build a program that asks the user for an integer input. Use exception handling to
ensure that the input is a valid integer. If the user provides invalid input, prompt
them to retry until a valid integer is entered.

3 Create a program that connects to a database and performs database operations
(e.g., insert, update, delete). Use exception handling to deal with database-related
exceptions, such as connection errors or SQL syntax error.

4 Create a program that reads data from a file specified by the user. Implement
exception handling to catch and handle the "FileNotFoundError" exception if the
file does not exist.

5 Define a dictionary with some key-value pairs. Ask the user for a key and attempt
to access the corresponding value from the dictionary. Handle the "KeyError"
exception and display a message if the key is not found.

